Tm3+ Modified Optical Temperature Behavior of Transparent Er3+-Doped Hexagonal NaGdF4 Glass Ceramics

نویسندگان

  • Chengqi E
  • Yanyan Bu
  • Lan Meng
  • Xiaohong Yan
چکیده

Er3+-doped and Er3+-Tm3+-co-doped transparent hexagonal NaGdF4 glass ceramics are fabricated via melt-quenching method. The emissions of Er3+-doped NaGdF4 glass ceramics are adjusted from the green to red by varying the concentration of Tm3+ ion under the excitation of 980 nm. The spectrum, thermal quenching ratio, fluorescence intensity ratios, and optical temperature sensitivity of the transparent glass ceramics are observed to be dependent on the pump power. The maximum value of relative sensitivity reaches 0.001 K-1 at 334 K in Er3+-doped NaGdF4, which shifts toward the lower temperature range by co-doping with Tm3+ ions, and has a maximum value of 0.00081 K-1 at 292 K. This work presents a method to improve the optical temperature behavior of Er3+-doped NaGdF4 glass ceramics. Moreover, the relative sensitivity SR is proved to be dependent on the pump power of 980-nm lasers in Er3+-doped NaGdF4 and Er3+-Tm3+-co-doped NaGdF4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interacti...

متن کامل

Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra w...

متن کامل

Distribution of Nd3+ ions in oxyfluoride glass ceramics

It has been an open question whether Nd3+ ions are incorporated into the crystalline phase in oxyfluoride glass ceramics or not. Moreover, relative research has indicated that spectra characters display minor differences between before and after heat treatment in oxyfluoride glass compared to similar Er3+-, Yb3+-, Tm3+-, Eu3+-, etc.-doped materials. Here, we have studied the distribution of Nd3...

متن کامل

Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, bl...

متن کامل

Near-infrared luminescence of rare earth ions in oxyfluoride lead borate glasses and transparent glass-ceramic materials

Oxyfluoride lead borate glasses singly doped with Nd3+ and Er3+ ions have been studied before and after thermal treatment. The orthorhombic PbF2 crystallites are formed during thermal treatment, which was evidenced by X-ray diffraction analysis. Near-infrared luminescence spectra at 1.06 μm and 1.53 μm have been registered for samples before and after annealing, which correspond to the main F3/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017